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1 Introduction

We establish a general result about algebraie connections
across three perspective views of a 3D scene and demon-
strate its application to visual recognition via aligiunent,
We show that, i general. any three perspective views of
a seetie satisty o pair of trifinear functions of inage co-
ordinates. fn the Himiting case. when all three views are
orthographic. these functions beeonte linear and reduce
1o the form discovered by [31]. Using the trilinear result
one can manipulate views of an ohject (such as generate
novel views from two model views) without recovering
scene structure (metric or non-nietric}, camera transfor-
mation, or even the epipolar geometry.

The central results in this paper are contained in The-
orems 1 and 20 The fiest theoremn states that the vari-
ety of views ¢ of a fixed 3D object obtained by an un-
calibrated pin-hole camera satisfv a relation of the sort
Fle.ey ea) = 00 where c), v are two arbitrary views
of the object. and F has a special trilinear form. The
coefficients of F can be recovered linearly without es-
tablishing first the epipolar geometry, 3D structure of
the object. or camera motion. The auxiliary Lemmas
required for the proof of Theorem 1 may he of interest
on their own as they establish certain regularities across
projective transformations of the plane and introduce
new view invartants (Lennna 1),

Theorenm 2 is an obvious corollary of Theorem 1 but
contains a significant practical aspect. It is shown that
if the views v 0w are obtained by parallel projection.
then F reduces to a special bilinear form - or. equiva-
lently. that any perspective view v can be obtained by a
rational linear function of two orthographic views. The
reduction to a hilinear form implies that simpler recog-
nition schemes are possible if the two reference views
{model views) stored in memory are orthographic.

These two results may have several applications (dis-
cussed in Section 6). but the one emphasized throughout
this paper is for the task of recogunition of 3D objects
via alignment. The alignment approach for recognition
([33. 16]. and references therein) is based on the result
that the equivalence class of views of an object (ignor-
ing sclf occlusions) undergoing 3D rigid. affine or pro-
jective transformations can be captured by storing a 3D
model of the object. or simiply by storing at least two
arbitrary “model” views of the object assuming that
the correspondence problem between the model views
can somehow he solved (ef. [25. 5. 29]). During recog-
nition a small number of corresponding points between
the novel input view and the model views of a particular
candidate object are sufficient to “re-project”™ the model
onto the novel viewing position. Recognition is achieved
if the re-projected 1mage is successfully matched against
the input tmage. We refer to the problem of predicting
a novel view from a set of model views using a limited
number of corresponding points, as the prollem of ro-
projection.

The problem of re-projection can in principal be dealt
with via 3D reconstruction of shape and camera motion.
This includes classical structure from motion methods
for recovering rigid camera motion parameters and met-
ric shape [32. 8 31, 4. 5], and more recent meth-

ods Hor recovering non-tetrie structure, Le. assuining,
the objects undergo 31 affine or projective transforma-
tions, or cquivalently, that the caineras are uncalibrated
[17. 23,35 100 13, 270 28] The classic approaches for
perspective views are known to be unstable under errors
i nuage mmeasuretents, pnarrow field of view . and nner-
nal camnera caltbration (3. 9. 12 aud therefore, are nu-
likely to he of practical use for purposes of re-projection.
The non-metrie approaches. as a general concept. have
not been fully tested on real images, hut the methods
proposed so far rely on recovering, first the epipolar ge-
ometry  a process that is also known to be unstable i
the prescnee of noise,

i also kuown that the epipolar geonetey s by itself
sufficient to achieve re-projection by means of mterseet-
ing epipolar lines [220 6. 802100 21 11} This. however.
15 possible only if the centers of the three cameras are
non-collinear  which cau lead to mnmerical instability
unless the centers are far from collinear  and any ob-

Jeet point on the tri-focal plane cannot be re-projected

as well. Furtheripore, as with the non-mietrie reconstrue-
tion methods. obtaining the epipolar geometry is at hest
a sensitive process even when dozens ol corresponding
points are used and with the state of the art methods
{(see Section 5 for more details and comparative analysis
with simulated and real mages).

For purposes of stability. therefore. it i~ worthwhile
exploring more direet tools for achieving re-projection.
For instance. instead of reconstruction of shape and -
vanants we would like to establish a direct connection
hetween views expressed as a functions of mage coor-
dinates alone  which we will call ~algebraic functions
of views™. Such a result was estabiished in the ortho-
graphic case by [31]. There it was shown that any three
orthographic views of an objeet satisfy a linear function
of the corresponding image coordinates this we will
show here is simply a Hmiting case of larger set of al-
gebraie functions, that in general have a trilinear forn.
With these functions one can manipulate views of an
object. such as create new views, without the need to
recover shape or camera geometry as an intermediate
step - all what i< needed is to appropriately combine
the 1mage coordinates of two reference views, Also. with
these functions. the epipolar geometries are intertwined.
leading not only to absence of singularities. but as we
shall see in the experimental section to more accurate
performance in the presence of errors in itmage measire-
nients.

2 Notations

We consider object space to be the three-dimensional
projective space P3and image space to he the two-
dimensional projective space P2, Let @ C PP be aset of
points standing for a 3D object. and let ©; C P? denote
views (arbitrary). indexed by 7. of ®. Given two cam-
eras with centers located at 0.0 € P2 respectively. the
epipoles are defined to be at the intersection of the hine
00’ with both image planes. Becanse the image plane is
finite. we can assign. without loss of generality. the value
1 as the third homogeneous coordinate to every obscrved
tmage point. Thatis.if (. y) are the observed hmage co-




ordinates of sotne point (with respect to some arbitrary
origin say the geometric center of the image), then
p = (r.y. 1) denotes the homogenecons coordinates of
the image plane. Sinece we will be working with at most
three views at a tinie, we denote the relevant epipoles
as follows: let v € ¢ aud ' € vs be the corresponding
epipoles hetween views ¢, vw. and let ¢ € ¢ and " €
vy the corresponding epipoles between views o). Uy,
Likewise, corresponding image points across three views
will be depoted by p = (rop 1)y = (' 4. 1) and
=0y D). The term “image coordinates™ will de-
note the non-homogeneous coordinate representation of
Poeg (eog) (2 y) (" ") for the three correspond-
mg points,

Planes will be denoted by 7 indexed by 7. and just x
if only one plane is discussed. All planes are assued to
be arbitrary and distinet from one another. The symbol
= denotes equality up to a scale. (7L, stands for the
group of n x n matrices. and PGL,, is the group defined
up to a scale.

A coordinate representation R of P? is a tetrad of
coordinates [z,.. 2. 24, 23] such that if Ry is any oue al-
lowable representation. the whole class R cousists of all
those representations that can be obtamed from Ry by
the action of the group P(/Ly. Givenr a set of views ¢,
' = 1.2, ... of @. where coordinates on vy are (o, y. 1] and
Ry 1s a representation for which (z,.2,.:2) = (¢ 4. 1).
we will say that the object is undergoing at most 3D
relative affine transformations between views if the class
of representations R consists of all those representations
that can be obtained from Ry by the action of an affine
sttbgroup of PG Ly, In other words, the object undergoes
some projective transformation and projected onto the
view ¢y, after which all other transtormations applied to
® are affine. Note that this definition is general and al-
lows full uncalibrated pin-hole camera motion (for more
details on uncalibrated camera motion versus relative
affine transformation versus taking pictures of pictures
of the scene, see Appendix of [206]).

3 The Trilinear Form

The central result of this paper is presented in the fol-
lowing theorem. The remaining of the section is devoted
to the proof of this result and its implications.

Theorem 1 (Trilinearity) Let v, vty be three ar-
bitrary perspective vicus of some object. modeled by a set
of points i 3D. undergoing al most a 3D rclative affinc
fransformations befween views. The tmage coordinafes
(r.g) € vy (¥ y) € o and (2" . y") € v3 of thiee
corresponding points across three vicws salisfy a pair of
trilmear equalions of the followmg formn:

.r"(n 1 ey + ag) + .r”J"(n,l.r + azy + ag)+

ingrdoagy+no)+amr+any+ o =0,
and

(e + y+ 33)+ y' 0 (Gar + Sy + I+

P30 4 dry 4+ F) + e+ 3y + S =0,

whore the cocfliceents a0 3, 5= 1120 are fired for
all pornts, are wniqucly defoned up to an overall scalc

and o, = 3, j=1. 6.

The following auxiliary propositions are used as part of
the |1|‘(mf.

Lemuna 1 (Auxiliary - Existence) Lot 4 € PG
be the projective mapping (honography! vy — o due to
Let X be scaled to sabsfy ¢ = Ap, + o'
where po € vy and P/ € Cy oare corresponding pornts

comunyg from an arbidrary pomt P g 7.

some plane m

Then, for any
corvespondiny par p € ¢y oand pP € vy comng from an
arbitrary pont P € P we haee

P Ap ke’

The cocfficient b oas andependont of v 1e..
lo the chowee of the second vicw.

s nrargant

Ihe lemma. its proof and its theoretical and practjeal
implications are discussed in detail in [26]. Note that
the particular case where the homography 1 is atfine,
and the epipole ¢ is on the line at infinity. corresponds
to the construction of affine structure from two ortho-
graphic views [17]. The scalar & is called a rolative affine
tnvarian! and represents the ratio of the distance of P
from 7 aloug the line of sight. and the distance of P
from the camera center of ¢y, normalized by the ratio
of distances of 12, fromi the plane and the camera center.
This normalized ratio can be computed with the aid of
a second arbitrary view ¢.

Definition 1 Homographies A, € PG Ly from ¢ — v
duc to the same planc 7. are sard to be scale-compaidhle
if they are scaled 1o satisfy Lemma 1 1.c.. for any pont
P ®d projccting onto p € vy and p' € v there erists a
scalar b that satisfies
P g+ ke

Jor any view ;. where o
(scaled arbitrarily).

€ v s the epipole with o

Lemma 2 (Auxiliary Uniqueness) Ld 4V €
PG Ly be two homographies of vy — o due {o planes
Ty Ty, respectively. Then. there erists a scalar s. that
salisfies the cquation:

A=s4 = [av' S 0],

for some coefficients o, 3. 4.

Proof. Let ¢ € ¢ be any point in the first view.
There exists a scalar s, that satisfies o = g — 5, 1.
Let H = A5, and we have Hg = ¢/, But. as shown

in [27]. e = ¢ for any homography ¢} — ¢4 due to any
plane. Therefore. H ¢ = ¢ as well. The mapping of two
distinet points ¢. v onto the same point +* could happen
only if Hp=1'forall p € vy. and s, is a fixed scalar s.
This, in turn, implies that 1 is a matrix whose columns
are multiples of /. U

Lemma 3 (Auxiliary for Lemma 4) Let 4.V ¢
PG Ly be homographies from ¢y — vy duc to distinct
plan - a7y respectiveddy. and B.B' € PG Ly be homo-
graphies from vy — vy duc to 7w 7o, respectivdly. Then,
A = AT for some T € PGLy. and B = BOTC 1.

where (v = ¢




Proof. lLet 1 = .L_TI_\[. where 4y 1y are homo-
graplhies from ¢y, vy omwto w0 respectively.  Similarly
=By "B, where By By are homographies from ey ey
respectively. Let 4 = ‘f‘l.(“_:.(';;)r and e
(= Jrl(liug({'l.r-_.‘(';;),h. Then. B, > 4,1 =d
thus, we have 8 = l)’._Tl.Il( = Note that the only Jdif-
ference between 1, and B is due to the different lo-
cation of the epipoles eoeo whiel is compensated by ¢
(C'r = ). Let By € PG Ly be the homography from o
to . and Eo € PG Ly the homography from 7 to 7y,
Then with proper scaling of Iy and £ we have

N = A7 B = AT R = AT

onto Ty,

and with proper scaling of (' we have,
B =B E B CT = BOAT LB 7 = BOTC™

0

Lemma 4 (Auxiliary Uniqueness)

For scate-compatible homographres. the scalars s, o, 1.4
of Lemma 2 are tnvarviants indexed by oy wy.mo. That
s, qeeen an arbitrary thord view vy led BB be the ho-
mographees from o) — vy due to 7 79, respectively. Lel
B b scale-compateble with X, and B be scale-compatible
with V' Then,

B —~sB =[av". 30" 0"]

Proof. We show first that s is invariant. i.e.. that B —
sB’ 15 a matrix whose columuns are multiples of . From
Lemma 2. and Lemima 3 there exists a matrix H. whose
columns are multiples of ¢/, a matrix T that satisfies
A" = AT, and a scalar s such that [—sT = A7 H . After
multiplying both sides by B('. and then pre-multiplying
by ('~! we obtain

B—sBCTC™V= BOCA™"H(™.

From Lemma 3. we have B = BCTC ™! The ma-
trix A7'H has columns which are multiples of ¢ (be-
cause A7 = ¢), ("4 is a matrix whose columns
are multiple of and BCATVH is a matrix whose
columns are multiples of v/, Pre-multiplying BC' A~ H
by ('=' does not change its form because every column
of BC' A7VH(C'~1 is simply a linear combination of the
columns of BO'AVH . As a result. B — 5B’ is a matrix
whose colummns are multiples of ¢’

Let H = A—s.Aand H = B—sB’. Since the homogra-
plites are scale compatible, we have from Lemma 1 the
existence of invariants k. &’ associated with an arbitrary
p € vy. where ks due to m. and & is due to 7y p' =
Ap+bv' = Vp+ v and p”" =2 Bp+bo” = B'p+ Vo”
Then from Lemna 2 we have Hp = (sk' — b)v' and
Hp = (sk' = k)v”

pen only il the coeflicients of the multiples of +/

Since pis arbitrary. this could hap-
m H

and the coefficients of the multiples of ¢ in H. coincide.

0

Proof of Theorem: Lemma | provides the existence
part of theorem. as follows. Since Lemma | holds for
any plane. choose a plane 7 and let A, B be the scale-
compatible homographies vy «— 1o and ) — vy, respec-
tively. Then. for every point p € 1. with corresponding

poiuts p' € o p’ & ey the T exists i scalar & that sat-
. M ~

! 1 / .
isfies: p" = Ap+ ke’ and " = Bp+ ko' We canisolate
A from both equations and obtain:

I C . ,
— Tt — aTu - P T
k= ol =y T T s d T T T a = T it
b= = — - — g o =1 2

2 S 7 T By

where by by by and a) . as. @y are the row veetors of
and B and o = (el " = (el e o) Beeause
of the mvariance of & we can equate ternis of Equation |
with terms of Equation 2 and obtamn trihinear functions
of image coordinates across three views, For example,
by equating the first two terms in each of the cquations,
we obtain:

by = a0 ay — b)) p+
by — t"l’u.;;)lp + (cYa — i )Tp =0. (3
In a siilar fashion, alter equating the first terim of Egua-
tion 1 with the second ternn of Equation 2. we obtain:
an) " g = )t

by — ag) p+ (= b)) p=00 ()

y'(r by —

Both equations are of the desired forin, with the first six
coeflicients 1dentical across both equations.

The question of uniqueness arises because Lemma |
holds for any plane. If we choose a different plane. say
o, with homographies 4. B’ then we must show that
the new honographies give rise to the same coefficients
(up to an overall scale). The ll‘drt‘lltllﬂ\‘iW’(I (rrm\' i
Fquations 3 and 1 have the general form: o}b, + v/'a;
for some i and j. Thus. we need to show that thvu (\1-t~
a scalar s that satisfies

ri'a; — su;) = vi(b; = sbl).
This. however. follows directly from Lemmas 2 and 1. D
The direct 1mplication of the theorem is that one can
generate a novel view (13) by simply combining two
model views (1. 14). The coefficients «; and .3, of the
combination can be recovered together as a solution of
a linear system of 17 equations (24 — 6 — 1) given nine
corresponding points across the three views (more than
nine points can be used for a least-squares solution).
Taken together, Equations | and 2 lead to 9 algebraic
functions of three views. six of which are separate for +”
and y”. The other four functions are listed below:

Y+ Y+ ) = 0.
"+ YOS+ ) =0,
S Y () )+ () = 0,
"HO YO+ Y ) =

where () represent linear polynomials in . y. The solu-
tion for »”. ¢ is unique without constraints on the al-
lowed camera transformations. If we choose Equations 3
and 4. then v and vf should not vanish simultaneously.,
Lo v = (0.1.0) s a singular case. Also " = (0.1.0)
and v = (1.0, 0) give rise to singular cases. One can eas-
ily show that for each singular case there ~re two other
functions out of thie nmne available ones that provide a

Il




wiique solution for £,y Note that the singular cases
are pointwise, e only three epipolar directions are ex-
cluded, compared to the more wide-spread singular cases
that occur with epipolar intersection. as deseribed in the
mtroduction.

I practical terms, the process of generating a novel
view can be easily accomphished without the need 1o ex-
plicitly recover structure, camera transformation, or just
the epipolar geometry.  The process described here is
fundamentally different from intersecting epipolar lines
in the following ways: first. we use the three views to-
gether, instead of pairs of views separately: second. there
is no process of line itersection, e the » and y coor-
dinates of vy are obtained separately as a solution of a
single equation in coordinates of the other two views:
and thirdly, the process is well defined in cases where
intersecting epipolar lines becomes singular (e.g.. when
the three camera centers are collinear). Furtheriore. by
avoiding the need 1o recover the epipolar geometry we
obtain a significant practical advantage. since the epipo-
lar geometry is the most error-sensitive component when
working with perspective views.

The connection between the general result of trilinear
functions of views to the “linear combination of views”
result [31] for orthographic views, can easily be seen hy
setting .1 and B to be affine in P2 and o = % = 0.
For example. Equation 3 reduces to

1

et =+ (Hay = b)) p =0,

which is of the form
ape’ + o’ + ose + gy + a5 = 0.

Thus. in the case where all three views are orthographic.
" 1s expressed as a linear combination of image coordi-
nates of the two other views — as discovered by [34].

4 The Bilinear Form

Consider the case for which the two reference (model)
views of an object are taken orthographically (using a
tele lens would provide a reasonable approximation). but
during recognition any perspective view of the object is
allowed. It can easily be shown that the three views are
then connected via bilinear functions (instead of trilin-
ear):

Theorem 2 (Bilinearity) Vithin the conditions of
Theorem 1. in casc the views vy and vo are obtamed
by parallel projection. then the paur of trilincar forms of
Theorem | reduce to the following pair of bilinear ¢qua-
lions:

oprdosytas) a2’y Fasr +acefasytag =0,
and

Yo+ doy+ 33)+ ey s+ '+ Sea + Sty + 3 = 0.
where oy = 3; j=1.....4

Proof. Under these conditions we have from Lemma |
that .4 is affine in 7 and ¢; = 0. therefore Equation 3
reduces to:

(e by —cNan T p+ e e+ (ay~ b )T = 0.

4

Sinttarly. Equation 4 reduces to:
g ety — cla )lv/'+!;';y/”.r'— el eay~ ol V=

Both cquations are of the desired formn. withe the first
four coeflicients identieal across both cquations. D

A bilinear funetion of three views has two advantages
over the general tolinear function. Fiest. only six cor-
responding points {instead of pine) across three views
are required for solving for the coctlicients. Second. the
lower the degree of the algebraie function. the less sen-
sitive the solution should bean the presence of errors i
measuring correspotdences. Iy other words, 1t s hikely
(though not necessary) that the higher order terms. such
as the term 2”00 in FEquation 3. will have a lagher con-
tribution to the overall error sensitivity of the system.

Compared to the case when adl vicws arc assunied or
thographic. this case is much less of an approxunation.
Since the model views are taken only onece, it 1s not un-
reasonable to require that they he taken in a special
way, natnely, with a tele lens (assuminig we are dealing
with object recognition, rather than scene recogmton).
If that requirement is satisfied. then the recognition task
is general sinee we allow any perspective view to be taken
during the recognition process.

5 Experimental Data

The expertments described in this section were done
order to evaluate the practical aspect of using the trilin-
ear result for re-projection compared to using epipolar
intersection and the linear combination result of [34] (the
latter we have shown is simply a lnniting case of the tri-
linear result).

The epipolar intersection method was nnplemented in
the following way. Let /3 and Fuy be the matrices (“es-
sential” matrices in classical terminology [18]. which we
adopt here) that satisty p" Figp = 0. and p”' Fagp/ = 0.
Then. by incidence of p” with its epipolar line. we have:

11“ >~ F];;l) X F-_:;;[)I.

Therefore. given eight corresponding points across the
three views. we can recover the two essential matrices.
and theun re-project all other object points onto the third
view. In practice one would use more than eight points
for recovering the essential matrices in a linear or non-
linear squares method. Since linear least squares meth-
ods are still sensitive to image noise, we used the nnple-
mentation of a non-linear method described in [19] which
was kindly provided by T. Luong and L. Quan.

The first experiment is with simulation data showing
that even when the epipolar geometry is recovered accu-
rately, it s still significantly better to use the trilinear
result which avoids the process of line intersection. The
second experiiment is done on a real set of images. com-
paring the performance of the various methods and the
number of corresponding points that are needed in prac-
tice to achieve reasonable re-projection results.

5.1
We used an object of 46 points placed randomly with -
coordinates hetween 100 units and 120 units. and r. y

Computer Simulations
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Figure 1: Compariug the performance of the epipolar intersection miethod (the dotted line) and the trilinear functions
method (dashed line) in the presence of image noise. The graph on the left shows the maximal re-projection error
averaged over 200 trials per noise level (bars represent standard deviation). Graph on the right displays the average
re- projection error averaged over all re-projected points averaged over the 200 trials per noise {evel.

coordinates ranging randomly between -125 and +125.
Focal length was of 50 units and the first view was ob-
tained by fa/z. fy/:. The second view () was gener-
ated by a rotation around the point (0.0. 100) with axis
(0.14.0.7.0.7) and by an angle of 0.3 radians. The third
view (U3) was generated by a rotation around an axis
(0. 1.0) with the same translation and angle. Various
amounts of random noise was applied to all points that
were to be re-projected onto a third view. but not to the
eight or nine points that were used for recovering the
parameters (essential matrices, or trilinear coefficients).
The noise was random, added separately to each coor-
dinate and with varving levels from 0.5 to 2.5 pixel er-
ror. We have done 1000 trials as follows: 20 random
ohjects were created. and for each degree of error the
simulation was ran 10 times per object. We collected
the maximal re-projection error (in pixels) and the av-
erage re-projection error {averaged of all the points that
were re-projected). These numbers were collected sepa-
rately for each degree of error by averaging over all trials
(200 of them) and recording the standard deviation as
well.  Since no error were added to the eight or nine
points that were used to determine the epipolar geom-
etry and the trilinear coefficients, we simply solved the
associated linear systems of equations required to obtain
the essential matrices or the trilinear coefficients.

The results are shown in Figure 1. The graph on
the left shows the performance of both algorithms for
each level of image noise by measuring the maximal re-
projection error. We see that under ail noise levels, the
trilinear method is significantly better and also has a
smaller standard deviation. Similarly for the average re-
projection error shown in the graph on the right.

This difference in performance is expected. as the tri-
linear method takes all three views together, rather than
every pair separately, and thus avoiding line intersec-
tions.

5.2 Experiments On Real Images

Figure 2 shows three views of the object we selected for
the experiment. The object is a sports shoe with added
texture to facilitate the correspondence process.  This
object was chosen because of its complexity, 1.e.. it has a
shape of a natural object and cannot easily be described
parametrically (as a collection of planes or algebraic sur-
faces). Note that the situation depicted here is challeng-
ing because the re-projected view is not in-between the
two model views, i.e.. one should expect a larger sensi-
tivity to image noise than in-between situations. A set of
34 points were manually selected on one of the frames.
v'1. and their correspondences were automatically oh-
tained along all other frames used in this experiment.
The correspondence process is based on an implementa-
tion of a coarse-to-fine optical-flow algorithin described
in [7]. To achieve accurate correspondences across dis-
tant views, intermediate in-between frames were taken
and the displacements across consecutive franmes were
added. The overall displacement field was then used to
push ("warp™) the first frame towards the target frame
and thus create a synthetic image. Optical-flow was ap-
plied again between the synthetic frame and the target
frame and the resulting displacement was added to the
overall displacement obtained earlier. This process pro-
vides a dense displacement field which is then sampled
to obtain the correspondences of the 34 points mmitially
chosen in the first frame. The results of this process are
shown i Figure 2 by displaying squares centered around
the computed locations of the corresponding points. One
can see that the correspondences obtained in this manner
are reasonable. and in most cases to sub-pixel accuracy.
One can readily automate further this process by select-
ing points in the first frame for which the Hesstan ma-
trix of spatial derivatives is well conditioned - similar
to the confidence values suggested in the implementa-
tions of [4, 7. 30] - however, the intention here was not
so much as to build a complete system but to test the




Figure 2: Top Row: Two model views, v'; on the left and v+ on the right. The overlayed squares illustrate the
corresponding points (34 points). Bottom Row: Third view 5. Note that v3 is not in-between ¢ and v». making
the re-projection problem more challenging (i.e.. performance is more sensitive to image noise than in-between
situations).

Figure 3: Re-projection onto '3 using the trilinear result. The re-projected points are marked as crosses. therefore
shiould be at the center of the squares for accurate re-projection. On the left. the minimal number of points were used
for recovering the trilinear coeflicients (nine points): the average pixel error between the true an estimated locations
is 1.4, and the maximal error is 5.7. On the right 12 points were used in a least squares fit: average error is 0.1 and

maximal error is 1.4. 6
)




Figure 1 Results of re-projection using intersection of epipolar lines. The re-projected points are marked as crosses,
therefore should be at the center of the squares for accurate re-projection. in the lefthand display the ground plane
points were used for recovering the essential matrix (see text). and in the righthand display the essential matrices
were recovered from the implementation of [19] using all 34 points across the three views. Maximum displacement
error in the lefthand display is 25.7 pixels and average error is 7.7 pixels. Maximal error in the righthand display is

434 pixels and average error is 9.58 pixels.

performance of the trilinear re-projection method and
compare it to the performance of epipolar intersection
aud the linear combination methods.

The trilinear method requires at least nine correspond-
ing points across the three views (we need 17 equation.
and nine points provide 18 equations). whereas epipolar
intersection can be done (in principle) with eight points.
The question we are about to address is what is the
number of points that are required in practice (due to
errors 1n correspondence, lens distortions and other ef-
fects that are not adequately modeled by the pin-hole
camera model) to achieve reasonable performance?

The trilinear result was first applied with the minimal
nunmber of points (nine) for solving for the coefficients,
and then applied with 12 points using a linear least-
squares solution. The results are shown in Figure 3.
Nine points provide a re-projection with maximal error
of 5.7 pixels and average error of 1.4 pixels. The solution
using 12 points provided a significant improvement with
maximal error of 1.4 and average error of 0.4 pixels. Us-
ing more points did not improve significantly the results:
for exatuple, when all 34 points were used the maximal
error went down to 1.14 pixels and average error stayved
at (.42 pixels.

Next the epipolar intersection method was applied.
We used two methods for recovering the essential matri-
ces. One method is by using the implementation of [19].
and the other is by taking advantage that four of the cor-
responding points are coming from a plane (the ground
plane). In the former case. much more than eight points
were required in order to achieve reasonable results. For
example, when using all the 34 points. the maximal er-
ror was 43.4 pixels and the average error was 9.58 pixels.
In the latter case. we recovered first the homography B
due to the ground plane and then the epipole ' using
two additional points (those on the film cartridges). It

is then known (see [26. 20]) that Fiy = [¢"]B. where [¢7]
is the anti-symmetric matrix of /. A similar procedure
was used to recover Fuy. Therefore, only six points were
used for re-projection. but nevertheless, the results were
slightly better: maximal error of 25.7 pixels and average
error of 7.7 pixels. Figure -1 shows these resulis.

Finally. we tested the performance of re-projection us-
ing the linear combination method. Since the linear com-
bination methods holds ouly for orthographic views. we
are actually testing the orthographic assumption under
a perspective situation, or in other words. whether the
higher (bilinear and trilinear) order terms of the trilin-
ear equations are significant or not. The linear combina-
tion tmethod requires at least four corresponding points
across the three views. We applied the method with four.
12 (for comparison with the trilinear case shown in Fig-
ure 3). and all 34 points (the latter two using linear least
squares). The results are displaved in Figure 5. The per-
formance i all cases are significantly poorer than when
using the trilinear functions, but better than the epipolar
imtersection method.

6 Discussion

We have seen that any view of a fixed 3D object can
be expressed as a trilinear function with two reference
views in the general case. or as a bilinear function when
the reference views are created by means of parallel pro-
jection. These functions provide alternative, much sim-
pler. means for manipulating views of a scene han other
methods. Experimental results show that the trilinear
functions are also useful in practice vielding performance
that is significantly better than epipolar intersection or
the finear combination method.

The application that was emphasized throughcut the
paper is visual recognition via ahignment. Reasonable




Figure 5: Results of re-projection using the lin ar combination of views method proposed by [34] (applicable to
parallel projection). Top Row: In the lefthand display the linear coefficients were recovered from four corresponding
points: maximal error is 6.7 pixels and average error is 20.3 pixels. In the righthand display the coeflicients were
recovered using 12 points in a linear least squares fashion: maximal error is 24.3 pixels and average error is 6.8 pixels.
Bottom Row: The coefficients were recovered using all 34 points across the three views., Maximal error is 29.4 pixels
and average error is 5.03 pixels.




performance was chtamed with 12 corresponding pomis
with the novel view (o) which may be too many if e
inage to model matehing s done by teving all possibile
combinations of point matches, The existence of bilinear
functions i the special case where the modet s ortho-
graphic, but the novel view is perspective, is ore cn-
couraginy from the standpoint of counting points. Here
we have the result that only SIXC corresponding points
are required 1o obram recognition of perspretive views
(provided we can satisfy the requirenent that the model
is 'll'llltl:l'1||l|lil'), We have not experimented with hilin-
ear funetions to see how many points wouhl be needed
i practice. but plan to do that e the future. Beeanse
of therr stnplicity . one may speculate that these alge-
brate functions will fined uses o tasks other than visual
recosnition

There may exist other apphications where simiplicity
i~ of magor importance, whereas the manber of points

sonie of those are discussed Lefow.

i~ less of o concern. Consider Tor exanple. the appli-
cation of model-based compression. With the trilinear
functions we need 17 parimeters 1o represent i view as
a funenion of two reference views o full correspondence.
Assume hoth the seuder and the recetver hiave the two
reference views and apply the same algorithng for obtain-
g correspondences between the two views, To send
a third view (ignoring problemns o self occlusions that
could be dealt separately) the seuder can solve for the
17 parameters using many points, but eventually send
only the 17 parameters, The receiver then simply come-
bines the two reference views i a “trilinear way”™ given
the recetved parmneters. Thisis clearly a domain where
the number of points are not a major concern. whereas
stplicity, and robustness (as shown above) due to the
short-cut in the computations, is of great importance.

Related to nnage coding. an approach of image decom-
position into “layers™ was recently proposed by [1. 2] In
this approach. a sequence of views is divided up into re-
gions. whose motion of cacli is deseribed approximately
by a 2D afline transformation. The sender sends the first
nnage followed only by the six aftine parameters tor cach
region for cach subsequent frame. The use of algebraie
functions of views can potentially make this approach
more powerful because instead of dividing up the scene
mto planes fit wounld have been planes if the projection
wias parallel. in general it not even planes) one ean at-
tempt to divide the seene into objecrs, each carries the
17 parameters deseribing its displacement onto the sub-
sequent frame.

Another area of appheation may be in computer
graphies. Re-projection technigues provide a short-cat
for 1image rendering.  Given two fully rendered views
of some 3D object. other views (again ignoring self-
ocelusions) can be rendered by simply “combining”™ the
reference views.  Again. the number of corresponding
points is less of a con srn here.
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